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Abstract

New closure approximations are proposed, within the framework of non-linear eddy-viscosity modeling, which aim specifically at

an improved representation of near-wall anisotropy in both shear and stagnation flows. The main novel element is the introduction

of tensorial terms, alongside strain and vorticity, which depend on wall-direction indicators and which procure the correct as-

ymptotic near-wall behavior of the Reynolds stresses. The newly formulated non-linear constitutive equation for the Reynolds

stresses is combined with low-Reynolds-number forms of equations for the rate of dissipation e or the specific dissipation x, the
latter incorporating a number of new features into the established form of the equation. The predictive performance of three model

variants is investigated by reference to three test flows: a plane channel flow, a separated flow in a channel with periodic hill-shaped

obstacles on one wall and a plane impinging jet. It is shown that the new model elements result in a substantially improved rep-

resentation of the Reynolds-stress field at the wall, especially in the wall-normal Reynolds stress. One of the variants includes the use

of the modified x-equation, and it is shown that this model performs especially well in the presence of separation.
� 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Reynolds-averaged turbulence models continue to

constitute the principal approach for representing the

effects of turbulence in prediction procedures for engi-
neering flows. Among them, algebraic relations that link

the Reynolds-stress components to mean velocity gra-

dients have been widely used. A great deal of effort has

gone, especially over the past decade, into the develop-

ment and improvement of constitutive expressions that

relate the Reynolds-stress tensor, non-linearly, to the

strain-rate and vorticity tensors. Examples are the non-

linear eddy-viscosity models (NLEVMs) of Suga (1995),
Craft et al. (1996), Apsley and Leschziner (1998), Suga

and Abe (2000) and Wallin and Johansson (2000), the

last arising from a formal inversion of an algebraic ap-

proximation of a second-moment-transport closure to

give explicit algebraic relations for the Reynolds stres-

ses. Such models are designed to capture anisotropy and

to represent, realistically, the response of turbulence to

curvature and normal straining, without the elaboration

imposed by full second-moment closure.
One issue that has been the subject of much attention,

in all categories of models, is the wall-limiting behavior

returned by low-Reynolds-number (LRN) forms that

are designed to be applicable across the viscous sub-

layer, down to the wall. This is, naturally, of particular

concern in relation to heat and mass transfer at walls, in

which case the turbulence property of the near-wall

layer plays a critical role. In the context of linear eddy-
viscosity models (LEVMs), key aspects of the near-wall

behavior are the decay of turbulence energy, turbulent

viscosity and the turbulent shear stress, as well as the

behavior of the dissipation rate or other length-scale

surrogates. Numerous LEVMs have been proposed in

the 1980s and 1990s, each distinguished from others,

principally, by particular forms of viscosity-related

damping functions intended to control the wall-limiting
behavior.

*Corresponding author. Tel.: +81-92-642-3723; fax: +81-92-642-

3752.

E-mail address: abe@aero.kyushu-u.ac.jp (K. Abe).

0142-727X/03/$ - see front matter � 2002 Elsevier Science Inc. All rights reserved.
doi:10.1016/S0142-727X(02)00237-0

International Journal of Heat and Fluid Flow 24 (2003) 181–198

www.elsevier.com/locate/ijhff

mail to: abe@aero.kyushu-u.ac.jp


In the case of non-linear models, securing the correct

representation of the wall-limiting behavior is consid-

erably more challenging than in linear forms. Here, the

requirement is for the model to correctly represent the

variation of all stress components as the wall is

approached, and this needs to be done in the face of

especially high levels of anisotropy and rapid variations

thereof. Inevitably, this entails, again, the use of
viscosity-dependent damping functions, but must also

involve the introduction of carefully designed functions

of strain and vorticity invariants. There remains much

room for improving current NLEVMs in this respect.

Such improvements are imperative if NLEVMs are to

form a credible basis for advanced scalar-flux models

(e.g., Abe and Suga, 2001a,b) which lean heavily on the

correct prediction of all Reynolds-stress components,
especially in the case of complex flows involving sepa-

ration and impingement where all flux components

affect the mean scalar field.

The present paper is a contribution to the ongoing

search for better non-linear eddy-viscosity models for

complex flows. The emphasis of the contribution is on

improved forms of the stress–strain/vorticity relations

that are designed to procure the correct stress aniso-
tropy at the wall. In addition, the paper examines the

influence of representing the length scale, alternatively,

via transport equations for the dissipation rate, e, and
the specific dissipation, x ¼ e=k. The characteristics of
the proposed models are illustrated by application of the

models to three flows: a plane channel flow, a separated

flow in a channel with wavy-wall-like periodic con-

strictions and a plane impinging jet.

2. Stress–strain relation for Reynolds-stress tensor

2.1. Basic formulation

The key objective pursued below is to provide a

framework for evaluating the Reynolds-stress tensor

uiuj. The starting point is the model of Abe et al. (1997).
In what follows, use is made of the anisotropy tensor

bij, the strain-rate tensor Sij and the vorticity tensor Xij,

the last two normalized with the turbulent time scale:

bij ¼
uiuj
2k

� dij

3
; Sij ¼

1

2

oUi

oxj

�
þ oUj

oxi

�
;

Xij ¼
1

2

oUi

oxj

�
� oUj

oxi

�
; ð1Þ

b�ij ¼ CDbij; S�
ij ¼ CDsSij; X�

ij ¼ CDsXij; ð2Þ

where

s ¼ mt
k
; mt ¼ Clfl

k2

e
; CD ¼ 0:8; Cl ¼ 0:12: ð3Þ

To represent the damping effects of viscosity, use is

made of Abe et al�s damping function:

fl ¼ 1

"
þ 35

R
3
4
t

exp

(
� Rt
30

� �3
4

)#
1f � fw 26ð Þg; ð4Þ

Nomenclature

A flatness parameter, 1þ 9IIþ 27III
bij anisotropy tensor, uiuj=2k � dij=3
D width of nozzle exit

H half width of channel; height of hill; distance

between wall and nozzle

k turbulence energy, uiui=2
n distance from the nearest wall

n� non-dimensional distance, uen=m
Rt turbulent Reynolds number, k2=me
Re Reynolds number, U 0H=m or U 0D=m
Sij strain-rate tensor, oUi=oxj þ oUj=oxi

� �
=2

t time

U 0 reference velocity

U , V mean velocity in x- and y-directions, respec-
tively

Ui; ui mean velocity and turbulent fluctuation in
i-direction, respectively

uiuj Reynolds-stress tensor

u, v turbulent fluctuation in x- and y-directions,
respectively

ue Kolmogorov velocity scale, ðmeÞ1=4
x, y Cartesian coordinates

XR flow-reattachment length

xi Cartesian coordinate in i-direction
D=Dt substantive derivative, o=ot þ Ujo=oxj
ð Þþ normalized value by friction velocity

ð Þ Reynolds-averaged value

Greeks

dij Kronecker delta

e dissipation rate of turbulence energy,

m oui=oxj
� �

oui=oxj
� �

m, mt kinematic and eddy viscosity, respectively

s, sd characteristic time scales for turbulence
Xij vorticity tensor, oUi=oxj � oUj=oxi

� �
=2

x specific dissipation

II second anisotropy invariant, � 1
2
bijbji

III third anisotropy invariant, 1
3
bijbjkbki
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where

fwðnÞ ¼ exp
(

� n�

n

� �2)
: ð5Þ

In Eqs. (4) and (5), Rtð¼ k2=meÞ is the turbulent
Reynolds number, n�ð¼ uen=mÞ is the non-dimensional
wall distance and n is a prescribed constant.
The basic constitutive relation for the anisotropy

tensor is that proposed by Abe et al. (1997),

b�ij ¼
1

1þ 22
3
X�2 þ 2

3
X�2 � S�2

	 

fB

�
� S�

ij

� 2 S�
ikX

�
kj

	
� X�

ikS
�
kj



þ 2 S�

ikS
�
kj

�
� dij

3
S�2

��
; ð6Þ

where

fB ¼ 1þ Cg X�ð � S�Þ

S�2 ¼ S�
mnS

�
mn; X�2 ¼ X�

mnX
�
mn;

S� ¼
ffiffiffiffiffiffi
S�2

p
; X� ¼

ffiffiffiffiffiffiffi
X�2

p
; Cg ¼ 100:

ð7Þ

It is noted here, however, that the function fB is not
identical to the original form, but has been modified

slightly in connection with further modifications de-

scribed below. The arguments leading to Eq. (6) are

described in Abe et al. (1997).

To facilitate further considerations, relation (6) is
decomposed into its linear and non-linear parts:

b�ij ¼ 1 b�ij þ2b�ij; ð8Þ

where

1b�ij ¼ �CBS�
ij;

2b�ij ¼ CB

�
� 2 S�

ikX
�
kj

	
� X�

ikS
�
kj



þ 2 S�

ikS
�
kj

�
� dij

3
S�2

��
:

ð9Þ
In Eq. (9), the coefficient CB arises directly from Eq. (6)

as

CB ¼ 1

1þ 22
3
X�2 þ 2

3
X�2 � S�2

	 

fB

: ð10Þ

Modifications to follow relate to the non-linear group in

Eq. (8).

2.2. Modification for strong normal strain

Although the basic formulation Eq. (6) is designed to

give reasonable predictions for both wall and homo-

geneous shear flows (Abe et al., 1997), it does not perform
well in flows in which normal straining is dominant––for

example, in plain strain, axisymmetric contraction and

axisymmetric expansion. This weakness is addressed by

the introduction of the new model component,

sb�ij ¼ �CBfs1S�
ij þ 2CBfs2 S�

ikS
�
kj

�
� dij

3
S�2

�
; ð11Þ

where

fs1 ¼ fr1fr2Cs1 X�2
	

� S�2


;

fs2 ¼ �fr1fr2 1f þ Cs2 X�ð � S�Þg;

fr1 ¼
X2 � S2

X2 þ S2
; fr2 ¼

S2

X2 þ S2
;

S2 ¼ SmnSmn; X2 ¼ XmnXmn;

Cs1 ¼ 0:15 Cg; Cs2 ¼ 0:07 Cg:
ð12Þ

Thus, with the above modification included,

b�ij ¼1 b�ij þ2b�ij þsb�ij ð13Þ

Fragment Eq. (11), when added to Eq. (8), allows the

model to return a reasonable representation for strong

normal straining, and it also guarantees realizability.

The function fr1 ensures that relation (11) has no effect
in pure shear, while the function fr2 counteracts effects
arising from Eq. (11) in the presence of strong system

rotation, ensuring realizability under the condition
X2 	 S2. All model functions and coefficients in Eq. (11)
have been calibrated by reference to baseline flows

described below.

The performance of the modified model in homoge-

nous-flow conditions is illustrated in Fig. 1. The figure

shows the response of the anisotropy components,

evaluated from Eq. (2), to pure shear strain, plain strain,

Fig. 1. Model performance in homogeneous strain: (a) pure shear

strain; (b) plane strain; (c) axisymmetric contraction; (d) axisymmetric

expansion.
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axisymmetric contraction and axisymmetric expansion.

As seen from Fig. 1(a), reasonable shear-stress values

arise for both wall shear k=e
ffiffiffiffiffiffiffi
2S2

p
� 3:3

h i
and homo-

geneous shear k=e
ffiffiffiffiffiffiffi
2S2

p
� 6

h i
, with the realizability

condition secured for strong strain (Abe et al., 1997). As

for normal straining, plots (b)–(d) in Fig. 1 demonstrate

that the normal-stress separation is realistic and that
realizability is maintained even at high strain rates.

2.3. Modification for strong anisotropy in near-wall region

In common with other NLEVMs, the model (13) does

not return an adequate representation of anisotropy

close to the wall. To improve the predictive performance

of Eq. (13) in this respect, the following additive frag-
ment is proposed:
wb�ij ¼ CDfw 26ð Þwbij ð14Þ

wbij ¼ �aw
1

2
didj

�
� dij

3
dkdk

�
þ 1
�

� f 2r1
�

�
(

� bwCw

1þ Cw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S��2X��2

p S��
ik X��

kj

	
� X��

ik S
��
kj




þ cwCw

1þ CwS��2 S��
ik S

��
kj

�
� dij

3
S��2

�)
; ð15Þ

where

S��
ij ¼ sdSij; X��

ij ¼ sdXij; S��2 ¼ S��
mnS

��
mn;

X��2 ¼ X��
mnX

��
mn:

ð16Þ

In Eq. (15), di is a unit vector representing the wall-
normal direction. In this study, di takes the form,

di ¼
Niffiffiffiffiffiffiffiffiffiffi
NkNk

p ; Ni ¼
old
oxi

; ld ¼ n: ð17Þ

Although the wall distance (n) is used above, alternative
variables could be proposed, as long as its spatial gra-

dient vector represents realistically the wall-normal di-

rection. Possibilities include k3=2=e and a combination of
this group with anisotropy parameters which show

characteristic wall-normal variations (e.g., Jakirlic and

Hanjalic, 1995; Craft and Launder, 1996; Iacovides and

Raisee, 1997).
The time scale sd is required to be associated with the

near-wall turbulence and must therefore be expected to

be related not only to the turbulent scales but also to the

viscosity. Hence, a general functional relationship is of

the form:

sd ¼ F
k
e
;

ffiffiffi
m
e

r� �
: ð18Þ

Following Durbin (1993), a model that may be adopted

for Eq. (18) is

sd ¼ max
k
e
; 6

ffiffiffi
m
e

r� �
:

In this study, however, a blending of the two time scales,

with weighting controlled by fw, has been found to give
better performance. Thus, the time scale is approxi-
mated by:

sd ¼ 1f � fw 15ð Þg k
e
þ fw 15ð Þ

ffiffiffi
m
e

r
: ð19Þ

This expression provides a continuous variation of the

time scale with the same limiting levels as Durbin�s
model and with equal weight given to the time scales in

the center of the buffer layer.
In computations to follow, we examine two sets of

model coefficients:

Model 1: aw ¼ 1; bw ¼ 1
4
; cw ¼ 1:5; Cw ¼ 0:5

ð20Þ

Model 2: aw ¼ 0; bw ¼ 5
12

; cw ¼ 0:5; Cw ¼ 1:0

ð21Þ

Model 2 is evidently based on the concept that the near-
wall anisotropy is controlled only by the strength of the

strain-rate components (Suga, 1995; Apsley and Lesc-

hziner, 1998; Wallin and Johansson, 2000). Although

this concept has been widely used, it causes a misrep-

resentation of the anisotropy at stagnation, separation

and reattachment points where the strain rate vanishes.

Without any correction, an isotropic state is returned. In

reality, however, the near-wall flow is highly anisotropic,
and while the wall-asymptotic variation of the individual

anisotropy components depends on the nature of the

flow above the immediate near-wall layer, typical vari-

ations are of the form b22 ! �1=3, b11 ! Oð0:4Þ and
b33 ! Oð�0:07Þ, with the first being unconditionally
correct. The consequence of b22 ! �1=3 is that turbu-
lence approaches the two-component line A ¼ 1þ
9IIþ 27III ¼ 0, where A is Lumley�s flatness parameter,
II ¼ � 1

2
bijbji

� �
and III ¼ 1

3
bijbjkbki

� �
are respectively the

second and the third invariants of the Reynolds-stress

tensor. However, the manner in which this line is ap-

proached is not universal and depends on the nature and

history of the flow bordering the near-wall region.

To some degree, adherence to the two-component

limit can be secured by calibrating model coefficients by

reference to DNS data for selected near-wall flows, as
has been done by Apsley and Leschziner (1998). How-

ever, this is not a general approach and does not result

in the correct variations for any significant range of

conditions.

Model 1 aims to procure the correct asymptotic ap-

proach to two-component turbulence for a range of flow

conditions. Its wall-related fragments reflect the notion

184 K. Abe et al. / Int. J. Heat and Fluid Flow 24 (2003) 181–198



that near-wall anisotropy should be controlled prefer-

entially by wall-proximity terms, Eq. (15). Among them,

the first term in Eq. (15) affects the anisotropy by

damping the wall-normal stress and enhancing the two
other components, regardless of the strain rate. As the

flow is allowed to affect the approach to the two-com-

ponent state, the expectation is that the model will be

applicable to both shear conditions (III > 0) and axi-
symmetric contraction (III < 0).
The general form of the constitutive equation for the

anisotropy used in calculations to follow is:

b�ij ¼ 1b�ij þ 1f � fw 26ð Þg 2
b�ij

n
þ sb�ij

o
þw b�ij; ð22Þ

where 1b�ij,
2b�ij,

sb�ij and
wb�ij are given by Eqs. (9), (11)

and (14), respectively. This form concurs with Eq. (13)

in the case of homogeneous flows that are free from
wall-related influences. The model (22) nullifies the non-

linear and normal-strain fragments very close to the

wall, where the anisotropy is controlled by Eqs. (14) and

(15). The Reynolds stresses may be evaluated from Eqs.

(2) and (22) as follows:

uiuj ¼
2

3
kdij þ 2kbij ¼

2

3
kdij þ 2k

b�ij
CD

� �
: ð23Þ

Attention is drawn to the fact that the model (14) is

independent of the non-linear model fragments in Eq.
(9). Hence, it can be employed, in principle, in con-

junction with any other model using an algebraic stress–

strain relationship.

3. Turbulence-transport equations

3.1. Turbulence-energy equation

The turbulence energy, required for the time scale and

turbulent viscosity in Eq. (3), is determined from the

usual form of the transport equation:

Dk
Dt

¼ o

oxj
m

��
þ mt

rk

�
ok
oxj

�
� uiuj

oUi

oxj
� e; ð24Þ

where

rk ¼
1:2

ft
; ft ¼ 1þ 5:0fw 5ð Þ: ð25Þ

As regards the turbulent diffusion, the value of rk must

be carefully calibrated because the present model adopts

a value of Cl different from the usual 0.09, in conjunc-

tion with CB of Eq. (9). Also, it has been demonstrated

by DNS data (Kim et al., 1990) that the turbulent dif-

fusion in the k-equation becomes larger as the wall is
approached, and thus a constant value of rk is inappli-
cable to the whole flow region (Nagano and Shimada,

1995). After careful calibrations, as part of this study,

rk ¼ 1:2 was adopted, together with a model function ft
given by Eq. (25). This function increases the turbulent

diffusion in the vicinity of the wall and, as a result, the

turbulence-energy budget can be successfully predicted,
as shown in Section 5.1.

3.2. Length-scale equations

Two alternative length-scale-governing equations are

investigated, one for the dissipation-rate e and the other
for the specific dissipation x ¼ e=k.
The dissipation-rate equation is that proposed by

Abe et al. (1997) with minor modifications:

De
Dt

¼ o

oxj
m

��
þ mt

re

�
oe
oxj

�
� Ce1

e
k
uiuj

oUi

oxj
� Ce2fe

e2

k
;

ð26Þ
where

fe ¼ 1

"
� 0:3 exp

(
� Rt
6:5

� �2)#
1f � fw 3:3ð Þg ð27Þ

Ce1 ¼ 1:45; Ce2 ¼ 1:83; re ¼
1:5

ft
: ð28Þ

The constant Ce2 is lower than the standard value 1.92.

This choice is rooted in modeling considerations by

Gatski and Speziale (1993) and Apsley and Leschziner

(1998) which pertain to the use of the x equation. These
suggest that the favorable properties of the x-equation
in boundary layers subjected to adverse-pressure gradi-

ent are due, in part, to a value of the coefficient b (see
below) being lower than that implied by the standard

value of the equivalent coefficient Ce2. It is noted that the

value of re needs to be calibrated carefully for the same

reasons as those discussed earlier in relation to the k-
equation. In this study, re ¼ 1:5 and the function ft in
Eq. (25) have been adopted to successfully reproduce the

log-low profile and the correct behavior of the dissipa-

tion rate in plane-channel flow.
The x-equation used here is as follows:

x ¼ e
b�k

ð29Þ

Dx
Dt

¼ o

oxj
m

��
þ mt

rx

�
ox
oxj

�
� a

x
k
uiuj

oUi

oxj
� bx2 þ Ex;

ð30Þ
where

Ex ¼ 1f � fw 600ð ÞgCx1s
ok
oxj

ox
oxj

; ð31Þ

b� ¼ b0

b
3b0

	 

þ Rtw

9

� �4
1þ Rtw

9

� �4 ; Rtw ¼ k
mx

; rx ¼ 1:5
ft

; ð32Þ
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b0 ¼ 0:09; a ¼ Ce1 � 1 ¼ 0:45;
b ¼ b0 Ce2ð � 1Þ ¼ 0:0747; Cx1 ¼ 1:5:

ð33Þ

In Eq. (31), s is as defined by Eq. (3). While this form
is based on that of Wilcox (1994), it includes a number
of influential modifications.

First, the mixed-derivative term Ex, Eq. (31), is in-

troduced. A mixed-derivative term, though not identical

to Ex, arises naturally in the transformation of the

e-equation to the x form, but is omitted from Wilcox�s
model. This term plays an important role (Menter, 1994)

in securing the correct behavior of the equation in the

region in which a shear layer borders a free stream. The
coefficients in Eq. (31) have been calibrated by reference

to the channel-flow computations discussed in Section

5.1.

Second, the coefficient a is lower than Wilcox�s value
of 5/9. This value implies Ce1 ¼ 1:56, which is much
larger than the generally accepted value of 1.44. This

difference is a further reason for the fact that Wilcox�s
x-equation tends to give longer recirculation zones than
the e-equation. While this elongation gives better accord
with experimental data for backward-facing-step flow,

there are examples in which the model returns exces-

sively long recirculation bubbles for other cases––for

example, in computations contributed to the Ninth

IAHR-ERCOFTAC Workshop on Refined Turbulence

Modeling, Jakirlic et al. (2001), for a channel flow

constricted by periodic �hills� (Temmerman and Lesc-
hziner, 2001). This is despite the fact that the model

takes no account of the effects of anisotropy and

streamline curvature, which are known to damp turbu-

lence and thus inhibit reattachment.

Based on the above observations, the values adopted

here for the constants a and b are those derived from the
e-equation (26). The coefficient rx is similarly taken over

from the e-equation. The resulting much closer com-
patibility between the present x- and e-equations, rela-
tive to Wilcox�s form, may be argued to permit a fairer
assessment to be made of the relative merits of using

either e or x as a basis for determining the length scale.
When the latter route is used, Eq. (29) provides the

means of extracting e from x, which is required in var-
ious other model components and equations (e.g., Eqs.

(3), (19) and (24)).
The predictive performance of three model variants is

investigated in computations presented in Section 4. The

first variant, designated Model 1, combines formulation

(20), with the e-equation (26). Model 2 combines the
formulation (21) with the same e-equation. The third
variant, designated Model 3, combines Eq. (20) with the

x-equation (30). Comparisons between Model 1 and
Model 2 are intended to provide information on the role
and effectiveness of the wall-related anisotropy frag-

ments, while comparisons between Model 1 and Model

3 are expected to highlight the consequence of alterna-

tive choices of surrogate length-scale variables.

4. Test cases and computational conditions

Three flow configurations have been selected to il-

lustrate the properties of the models formulated in

Sections 2 and 3. The first is a fully-developed plane-

channel flow at Re ¼ 6875, based on mean-flow velocity
and half-channel height, for which DNS data have been

reported by Kim et al. (1990). The second case (referred
to a �periodic-hill flow�) is a separated, spanwise-homo-
geneous flow in a periodically constricted channel, with

the constrictions being hill-shaped and nine hill-height

apart. The Reynolds number is 21 200, based on mean

velocity and channel height. For this geometry, highly-

resolved LES data have been reported by Temmerman

and Leschziner (2001) and Temmerman et al. (2003).

The third flow is a plane impinging jet at Re ¼ 6000,
based on maximum jet-exit velocity and nozzle width,

for which LES data have been reported by Abe and

Suga (2001b).

The channel flow was used to examine some basic

characteristics of the models, specifically in relation to

their response to near-wall shear. Computations were

performed with 84 wall-normal nodes covering the full

width of the channel. Streamwise homogeneity was im-
posed, yielding a 1D computational problem, with the

mass-flow rate fixed in the computation.

The periodic-hill flow is shown in Fig. 2. The presence

of massive separation between consecutive hills allows

the models to be investigated for conditions represen-

tative of complex separated flows. The close-to-ortho-

gonal wall-fitted computational grid consisted of 113�
65 nodes. Streamwise periodicity was imposed by an
iterative coupling of inlet and outlet conditions of the

segment shown in Fig. 2, with the mass-flow rate fixed

in the computation.

The plane impinging jet is shown in Fig. 3 and has

been chosen to investigate the performance of the

models in the presence of strong normal straining. A

Cartesian grid of 115� 87 nodes was used to cover one

Fig. 2. Hill-flow geometry.
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half of the symmetric flow domain to a height of

y=D ¼ 8:77. Conditions at the upper boundary were
taken from the LES data of Abe and Suga (2001b), to-
gether with the assumption Rt ¼ 300 used to determine
the rate of dissipation. At the outlet boundary,

x=D ¼ 13:7, zero streamwise gradients were prescribed.
In all three cases above, no-slip conditions were

specified at walls, and the wall-nearest node was placed

at yþ < 1. Calculations were performed with the finite-
volume procedure STREAM of Lien and Leschziner

(1994a), followed by several improvements and sub-
stantially upgraded by Apsley and Leschziner (2000).

This uses collocated storage on a non-orthogonal grid

and approximates all variables with the aid of the

UMIST scheme (Lien and Leschziner, 1994b), a TVD

implementation of the QUICK scheme.

5. Results and discussion

5.1. Plane channel flow

Figs. 4–6, each relating to one of the three models

defined in Section 3, give results for the mean velocity,

Reynolds stresses, budget of k, anisotropy components
and anisotropy invariants, by comparison to DNS data.

Note that the value of e for Model 3 is calculated from
Eq. (29). For this particular flow, Model 1 and Model 2

return identical solutions for the mean velocity, budget

of k and shear-stress component, all being in good
agreement with the DNS data. The agreement achieved

with Model 3 for the mean velocity is slightly less good,

suggesting a difference in the model-predicted wall-shear

stress relative to the DNS value.

All three models return more than a fair representa-

tion of the normal stresses near the wall, with the models

utilizing the wall-direction term in Eq. (15) doing best.

The plots for anisotropy tensor bij give an especially
clear view of the ability of the models to resolve the

intense near-wall anisotropy. Again, Model 1 and

Model 3 perform especially well, giving the correct wall-

limiting value of b22 ¼ �1=3. All three models wrongly
predict a trend towards isotropy as the channel center-

line is approached. This is a direct consequence of the

vanishing velocity gradient at the channel center and is

consistent with the state of isotropy predicted by Eq. (6)
for S2 ¼ 0 in homogeneous shear, as seen from Fig. 1(a).

Fig. 3. Plane-impinging-jet geometry.

Fig. 4. Predictions of Model 1 for plane channel flow: (a) mean velocity; (b) Reynolds stresses; (c) budget of turbulence energy; (d) anisotropy

profiles; (e) invariants of anisotropy tensor; (f) invariant map.
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The Reynolds-stress components may readily be used

to obtain distributions for the invariants II, III and A.
These are plotted in Figs. 4–6 in the form of cross-

channel profiles, as well as in the form of II=III-loci in

Lumley�s realizability map. Consistent with earlier re-
sults, Models 1 and 3 do well, especially near the wall

where both return a vanishing value for the flatness

parameter. Both also represent well the extreme values

Fig. 5. Predictions of Model 2 for plane channel flow: (a) mean velocity; (b) Reynolds stresses; (c) budget of turbulence energy; (d) anisotropy

profiles; (e) invariants of anisotropy tensor; (f) invariant map.

Fig. 6. Predictions of Model 3 (k–x version) for plane channel flow: (a) mean velocity; (b) Reynolds stresses; (c) budget of turbulence energy;
(d) anisotropy profiles; (e) invariants of anisotropy tensor; (f) invariant map.
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of II and III which identify the closest point to one-

component turbulence. Both observations highlight,

again, the important role played by the leading term in

Eq. (15).
All three models are seen to satisfy realizability, but

Model 1 does best in terms of representing both the

stress field and the mean-flow velocity. Model 2, while

generally satisfactory, shows some weaknesses very close

to the wall. In particular, this model neither returns the

correct limiting value )1/3 for b22 nor gives the wall-
limiting zero value for the flatness parameter signifying

two-component turbulence. While this defect may not
be of consequence to the predicted mean flow in rela-

tively simple shear flows, it will be shown below that it

can have a detrimental effect on predictive accuracy

in complex conditions.

5.2. Periodic-hill flow

Comparisons of model solutions for mean-flow
properties and Reynolds-stress components with corre-

sponding LES data of Temmerman and Leschziner

(2001) are shown in Figs. 7–10. Fig. 7 gives an overall

view, in the form of model-predicted streamfunction

plots (b)–(d), compared to the LES solution (a). The

reattachment locations XR=H predicted by Models 1, 2
and 3 are, respectively, 4.23, 4.17 and 5.36, relative to

the LES value 4.75. It is noted, by reference to the zero-
streamline, that separation is predicted by Models 1 and

2 to occur too late, especially by Model 1, and that the

reattachment behavior produced by these two models

differs from those returned by the LES and Model 3.

Specifically, the angle close to reattachment is steeper,

indicating a faster recovery towards reattachment.

While Model 3 over-estimates the length of the separa-

tion zone, it gives a more faithful representation of the
reattachment process.

It is recalled that a number of modifications have

been introduced to the baseline x-equation of Wilcox,
particularly in relation to model constants, in an effort

to achieve greater consistency between the two equa-

tions and to reduce the inappropriate tendency of the x-
based model to return excessive recirculation. As is ev-

ident, the modified version continues to display this

trend, although it must be born in mind that the model
used here resolves anisotropy and introduces a sub-

stantially greater sensitivity to curvature, via the strain

invariants in Eq. (6), relative to the linear model. Were

Wilcox�s x-equation to be used here, the recirculation
length would be grossly excessive. Hence, the present x-
equation has gone some way towards rectifying the

aberrant behavior noted above. The frequent observa-

tion that Wilcox�s LRN x-equation (Wilcox, 1994)
performs quite differently to the earlier high-Reynolds-

number form (Wilcox, 1988) in separated flow, suggests

a high sensitivity to the nature of the LRN-model

functions in the x-equation, and this may well be one
source for the delayed reattachment observed here.

Figs. 8–10 provide, forModels 1, 2 and 3, respectively,

distributions of streamwise velocity, Reynolds-stresses

and stress invariants at three streamwise positions,
x=H ¼ 2, 6 and 8. The first position is roughly in the
middle of the recirculation zone, x=H ¼ 6 is a short dis-
tance behind the reattachment point, while x=H ¼ 8 cuts
across the windward side of the hill where the flow is

subjected to strong acceleration. These three locations

may be claimed to represent regions in which three dis-

tinctly different types of flow conditions are encountered

in the present configuration.
The velocity-profile plots in Figs. 8–10 show all three

models to give a reasonable representation of the mean

flow, with Model 3 providing somewhat better accord

with the LES solution. All three models return a slightly

insufficient rate of recovery after reattachment. While

this might be expected in the case of Model 3, because of

the delayed reattachment it predicts, this weakness is

accentuated by Models 1 and 2, which give premature
reattachment. Hence, Model 3 may be claimed to pro-

vide the best representation, despite the slightly delayed

reattachment.

All three models also give similar shear-stress varia-

tions. At x=H ¼ 2, the predicted maximum shear stress
is consistently too low. This would be expected to go

hand-in-hand with an excessive shear strain. However,

this link ignores the influence of the pressure gradient in
the momentum balance, and it is not possible to uni-

quely relate the two. What is observed is that Model 3

gives the lowest level of shear stress and the highest level

of shear strain. While the details of the mechanism by

which the shear stress is generated are in principle, im-

material to the effect of the stress on the mean-flow field,

Reynolds-averaged models are unable to account for the

dynamic effects of the coherent motion and will there-
fore give an erroneous result in the shear layer. In par-

ticular, the predicted level is likely to be lower than that

returned by the LES. The fact that the strain in the shear

layer and the reattachment point are nevertheless
Fig. 7. Streamfunction contours for hill flow: (a) LES data; (b) Model

1; (c) Model 2; (d) Model 3 (k–x version).
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Fig. 8. Predictions of Model 1 for hill flow: (a)–(c) mean velocity; (d)–(f) Reynolds stresses; (g)–(i) anisotropy profiles; (j)–(l) invariants of anisotropy

tensor; (m)–(o) invariant map in the lower-wall region.
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Fig. 9. Predictions of Model 2 for hill flow: (a)–(c) mean velocity; (d)–(f) Reynolds stresses; (g)–(i) anisotropy profiles; (j)–(l) invariants of anisotropy

tensor; (m)–(o) invariant map in the lower-wall region.
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Fig. 10. Predictions of Model 3 (k–x version) for hill flow: (a)–(c) mean velocity; (d)–(f) Reynolds stresses; (g)–(i) anisotropy profiles; (j)–(l) invariants
of anisotropy tensor; (m)–(o) invariant map in the lower-wall region.
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broadly correct must, as noted already, be a conse-

quence of compensating adjustments to the present field.

As is seen from plots (f), the predicted shear stress at

x=H ¼ 8 is much higher than the LES level. This is
probably due to the significant contribution of shear-

stress transport to the stress balance, which none of the

present algebraic models are able to represent. Consis-

tently, they suggest that the predicted turbulence energy

is too low, again because of transport. In addition, the

state of anisotropy prevailing at this location is rather

exceptional, with the spanwise stress returned by the

LES being extremely high, implying a mechanism which
is not accounted for by the models, even not in a qual-

itative sense.

As regards the normal stresses at x=H ¼ 2 and 6, all
three models predict reasonable distributions and a

broadly correct separation among the stresses, except

for the region close to the wall. This emerges more

clearly from plots (g) and (h), which show distributions

of the anisotropy components. Near the lower wall,
there are material differences between Model 2 and the

other two models. It is recalled that this model does not

include the wall-orientation term in Eq. (15) and was not

able to return the correct wall-limiting behavior b22 ¼
�1=3 and A ¼ 0. This defect is also evident in Fig. 9(j)
and (k). A clear reflection of the above differences in

model characteristics is the different behavior of the

II=III-loci shown in plots (m) and (n). The LES results
suggest that the turbulent state at x=H ¼ 2 and 6, in the
region y=H < 1, is characterized by that encountered in
homogeneous axisymmetric contraction, represented by

the lower-left edge of the realizability triangle. This be-

havior is not reproduced by Model 2, but is returned––

at least qualitatively correctly––by both Models 1 and 3.

Since the non-dimensional shear parameters S�� and X��

are considerably weaker in the separated region than in
simple wall shear, the distributions of the invariants

returned by Model 2 show unrealistic features, resulting

in poor prediction of the near-wall anisotropy. In par-

ticular, the wall-normal turbulence is significantly too

high.

5.3. Plane impinging jet

Results for this third test case are presented in Figs.

11–14. First, Fig. 11 provides a velocity-vector plot

predicted by Model 1, alongside a comparison of

streamwise velocity profiles at y=D ¼ 4, 6 and 8, all three
sections being in the free-jet region. Differences among

the predicted profiles are insignificant in comparison to

those between predictions and simulation. All models

overestimate the centerline velocity and underestimate
the jet spreading rate, indicating defects in the formu-

lation of CB (Eq. (10)) and/or the turbulent diffusion

terms in turbulence-transport equations for free shear

flows.

Figs. 12–14 present, in parallel to the practice adop-
ted in the previous case, profiles of velocity, Reynolds

stresses, anisotropy components and anisotropy invari-

ants at three positions: x=D ¼ 0:04, 1 and 4, where x is
the distance from the stagnation point along the lower

wall. Each of the three figures relates to one of the

models investigated. The three selected positions are,

again, representative of distinct flow types; the first be-

ing in the impingement-dominated zone, the second in
the highly curved portion in which the wall jet begins to

form and the third being in the well-established wall-jet

region.

All three models give rise to very similar velocity and

shear-stress profiles. The predicted wall jet is narrower

than that simulated, which is consistent with the lower

magnitude of the shear stress returned by the models in

the outer part of the free shear layer y=D ¼ 1–1:5. Closer
to the wall, at y=D ¼ 0:3–0:7, the predicted shear stress
at x=D ¼ 1 is seen to be much larger than the simulated
level. In this region of intense curvature and high inertial

effects, stress-transport is likely to be high, and errors in

the representation of turbulence are most likely to be

caused by the models. The fact that the shear strain at

that position is also excessive, is consistent with the link

between shear strain and turbulence generation, but also
suggests that the misrepresentation of the mean flow at

that position is a consequence of the upstream structure

of the jet, coupled with the high convective transport

associated with the impingement process. At x=D ¼ 4,

Fig. 11. Predictions in free-jet region of impinging jet: (a) velocity

vectors by Model 1; (b) mean velocity at y=D ¼ 8; (c) y=D ¼ 6;
(d) y=D ¼ 4.
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Fig. 12. Predictions of Model 1 in near-wall region of impinging jet: (a)–(c) mean velocity; (d)–(f) Reynolds stresses; (g)–(i) anisotropy profiles; (j)–(l)

invariants of anisotropy tensor; (m)–(o) invariant map in the near-wall region.
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Fig. 13. Predictions of Model 2 in near-wall region of impinging jet: (a)–(c) mean velocity; (d)–(f) Reynolds stresses; (g)–(i) anisotropy profiles; (j)–(l)

invariants of anisotropy tensor; (m)–(o) invariant map in the near-wall region.
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Fig. 14. Predictions of Model 3 (k–x version) in near-wall region of impinging jet: (a)–(c) mean velocity; (d)–(f) Reynolds stresses; (g)–(i) anisotropy
profiles; (j)–(l) invariants of anisotropy tensor; (m)–(o) invariant map in the near-wall region.
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the wall jet is fairly well established, convective trans-

port is weak, and the correspondence between shear

stress and shear strain is much closer, with all three

models returning fairly good results.
The normal stresses, plots (d), (e) and (f) in Figs. 12–

14, and hence the anisotropy components, plots (g), (h)

and (i), are not very well resolved by any of the models,

but there are clear differences in model performance and

also some distinctly positive predictive aspects that are

worth being highlighted. It is pointed out first that the

transverse normal stress is extremely high in the im-

pingement region, where the flow is subjected to high
curvature and acceleration. This feature parallels closely

that observed in the previous hill-flow case, at x=H ¼ 8,
where the flow accelerates strongly along the windward

side of the hill. None of the present models (nor any

other RANS model the authors are aware of) is capable

of capturing this feature.

The second point to highlight is that Models 1 and 3

reproduce correctly, as they do in earlier cases, the near-
wall variation of the wall-normal anisotropy b22 and its
limiting wall value )1/3. In contrast, Model 2 fails to do
so. The differences in model performance are especially

striking at x=D ¼ 0:04. As seen in Fig. 13(g) and (j), the
normal stresses predicted by Model 2 return to isotropic

turbulence in the stagnation region near the wall, re-

sulting in an excessive level of vv, compared to that
provided by Models 1 and 3. Although the separation
among the anisotropy components is not satisfactory, it

improves with distance away from the immediate im-

pingement region, especially that returned by Models 1

and 3. This is well brought out by the profiles of the

stress invariants, plots (l). While the near-wall aniso-

tropy is too high, as is reflected by the excessive values of

II and III, the flatness parameter is reproduced well, and

it correctly approaches zero at the wall itself. This is also
the case at the impingement location, x=H ¼ 0:04, where
Model 2 produces a serious misrepresentation of the

stress field, giving a state of isotropy (A ¼ 1) at the wall,
as a natural consequence of the absence of the wall-

related fragments in Eq. (15).

The realizability maps, plots (m), (n) and (o), dem-

onstrate that all three models conform to realizability

constraints, even in the most taxing strain field associ-
ated with the impingement process. The simulation

suggests that the outer part of the shear layer conforms

broadly to the process of axisymmetric expansion, fol-

lowed by a thin region complying with axisymmetric

contraction and ending with an asymptotic decay to-

wards two-component turbulence. Model 2 entirely fails

to return these trends. While Models 1 and 3 do not

give a quantitatively correct representation of the
II=III-loci either, they do––at least for x=H ¼ 4––
reproduce the steep rise of the magnitude of II and III

and the trend towards the two-component state at the

lower wall.

The differences among the models in respect of the

near-wall state they predict are especially important for

heat-transfer computations. Within the framework of

algebraic stress/strain and flux/temperature-gradient
formulations, the heat-flux vector can be approximated,

most generally, with Daly and Harlow�s (1970) Gener-
alized Gradient Diffusion Hypothesis. The performance

of this approximation depends crucially on the stress

field, however. Near the wall, b22 (i.e., vv) plays an es-
pecially important role. A misrepresentation of this

component at impingement and reattachment points can

give rise to errors in the wall heat-transfer coefficient in
excess of 100%. Therein lies the importance of the dis-

tinction between Model 2 and Models 1 and 3. The

differences observed here reinforce the conclusion that a

model relying entirely on strain and vorticity invariants

for the representation of anisotropy, as most NLEVMs

do, cannot return the correct near-wall behavior.

6. Concluding remarks

New modeling elements have been proposed as addi-

tional fragments to non-linear strain- and vorticity-

dependent constitutive equations for the Reynolds

stresses, with the objective of improving the repre-

sentation of stress anisotropy in wall-bounded flows.

These have been combined with two alternative length-
scale-governing equations for dissipation and specific

dissipation, respectively. Computational results were

presented for three test cases involving, inter alia, wall-

shear, separation and strong normal straining. The main

conclusions derived from the study are as follows:

• A constitutive stress-governing algebraic equation
containing only velocity gradients, as a combination
of strain and vorticity terms, is insufficient to achieve

a credible representation of near-wall anisotropy in

the presence of weak shear and strong normal strain-

ing associated with impingement and reattachment.

• In order to secure a realistic representation of near-
wall anisotropy, the principal predictive requirement

is for the model to reproduce the damping effect of

the wall on the turbulent stresses, regardless of the
strength of the shear rate. A correct representation

of the wall-normal intensity is a pre-requisite for a

correct asymptotic behavior of turbulence towards a

state of two-component turbulence at the wall.

• The use of the specific dissipation x can offer signifi-
cant benefits in separated flow, but the related equa-

tion must be carefully formulated and calibrated,

with close reference to the dissipation-rate equation,
so as to avoid an excessive sensitivity to adverse pres-

sure gradient, anomalous delay in reattachment and

aberrant behavior at the edge of the shear layers bor-

dering a free stream.
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• While the present model proposals give improved
predictions for near-wall turbulence, they do not alle-

viate problems arising from the influence of stress

transport in strongly accelerating and decelerating
flows. This requires the use of second-moment clo-

sure or at least the introduction of approximations

of stress-anisotropy transport.
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